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Abstract - The synthesis of lumped-element equivalent
circuits for time-domain amalysis of problems with
frequency-dependent parameters is of great interest in
microwave theory. This paper presents a systematic
approach to generate minimal order realizations for passive
microwave circuits characterized by either admittance,
impedance or scattering parameter data. Also a very efficient
method to ensure inherent system properties such as stability
and passivity is described, Modeling examples for a two- and
four-port system are given.

I. INTRODUCTION

Efficient transient simulations of components
characterized by measured or tabulated frequency-
dependent data have been widely discussed in microwave
literature. The frequency-dependent nature of the
investigated problem generally requires: i) the definition
of the simulation model in frequency-domain, i) the
transformation from the frequency- to the time-domain,
and Jii) the transient analysis and time—Jdomain solution
[1]. Commonly, the port response at discrete frequency
points is availably in form of Y- (admittance), Z-
(impedance) or S- (scattering) parameters resulting from
broadband measurements or rigorous full-wave electro-
magnetic simulations. For the continuous representation in
frequency-domain rational functions in the complex
frequency s = jw are used. From the rational functions the
inverse Fourier transforms for closed-form representation
in time-domain are computed analytically. The resulting
simulation process in time-domain is resolved by using
recursive convolution schemes. However, the numerical
evaluation of convolution integrals can require strong
computational effort and can cause numerical stability
problems. Alternatively, macromoedel synthesis techniques
are applied to derive the corresponding equivalent circuit
of the device under test (DUT). In that case the CPU-
expenses for transient simulations are dependent on the
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order of the system mode! and the size of the synthesized
lumped-element network, respectively.

This paper discusses different data fitting techniques
used to pgenerate a rational transfer-function (TF}
representation for the discrete frequency response of
multiports. A systematic approach is presented to
determine the corresponding minimal order realization
from the calculated TF-matrix and ensure inherent system
properties such as stability and passivity in a very efficient
manner. The models provide an accurate description of the
investigated multiport within the specified frequency
range and exhibit a considerably reducéd complexity,
which is verified by numerical examples.

II. DATA FITTING BY RATIONAL FUNCTIONS

It is assumed that the frequency responses of the #-port
to be modeled are provided in terms of Y-, Z- or S-
parameters at a discrete set of frequency points @ that
covers the bandwidth of interest, as ¢.g. given in (1),

Y, (@) 1, (@)

(@)= : 0
(@) - Y.(@)
Y-, Z-, and S-matrices are connected to each other by
equations (2)-(3), where Z, is a diagonal matrix containing
the square roots of all port impedances.

Y@) =2 +s@y 2 N2 s 2,Y) @
ZUw,) =(Zy - S(@) Zo)(Zy +5(@)) Zo) 3)

The rational TF-matrix that approximates the n-port
frequency parameter data can be written as
Ag+A s+ A2+, +A,s°¢

H(s) = ‘
T+bis +bys2 +...+ bys7

J 4

where by is normalized to unity. The A;’s represent the
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n x n coefficient matrices of the numerator polynomials of
the order ¢; and the 4;’s are the coefficients of the common
denominator polynomial of the order 5. H(s) can also be
expressed in pole-residue form
: 7
H(s) =Ko + ) —oi

H
i=1 S_Pi_

(5)

where the p;’s are common poles and K,’s are residues of

H(s). The coefficients of the TF-matrix (4) can be calcu-

lated using different complex curve fitting techniques [2].

The Model-Based-Parameter-Estimation method, e.g.,
represents the extension of Prony’s approach to the
treatment of frequency-domain data [1]. The
g=n+(e+1)n* unknown coefficients in (4) are
computed by applying a point-matching algorithm, which
enforces the discrete data to be equal H(w) at q/2
frequency points ;. The resulting linear equation system
for real and imaginary part of H( @) are straight forward to
implement in computer code, however for high order
approximations over a wide frequency range the system is
highly ill conditioned. The problem can be overcome by
using normalized angular frequency values w,” = ay/ @,
splitting the frequency range in several sub-domains and/
or replacing the ordinary power series {1, @;, @, w;”"z}
in the linear equation system by orthogonal polynomials,
such as Chebyshev polynomials [3].

A different method was developed by Gustavsen and
Semlyen [4]. Their vector fitting procedure determines the
unknown residue values in (5) in an iterative manner
starting with an estimated set of real or complex conjugated
pairs of poles p;. The resulting over-determined equation
system is solved by applying a least square based
technique. A critical aspect of the vector fitting method is
the choice of the appropriate starting poles.

II1. MINIMAL ORDER REALIZATION

Given a TF-matrix H(s), several forms of time-domain
realizations can be obtained. The derivation of differentiat
equations from a TF-system is referred as macromodel
synthesis. In general, a set of first-order differential
equations in state-space domain can be described as

%x(t) =A-x()+B.u(?) ,
y(O) =C-x(t)+D-u()

where AcR™ BeR™ CcR*™ DecR™ and m
equals the number of states, i.e. the order of the system.
Using e.g. the Y-matrix {1), the k-th element of the input-
vector u{f) and the output-vector y(r) equals the voltage
vi{f) and the current i,(#) at port k, respectively.

(6)

A state-space realization (6) is said to be a minimal
realization of the TF-matrix H(s) if the system matrix A in
(6) has the smallest possible dimension, i.e. the fewest
number of states m. The smallest dimension is called the
McMillan degree of H(s) [5). To calculate the minimal

realization first either the left or right coprime
factorization
H(s) = H(s) - H(s = »)
(s) - H( -

H(s) = Dy(s)! - Ny(s) = N,(5) - D, (s)!

is calculated. Dy, N, D, N, e P(s)* are polynomial
matrices in s. Considering the right coprime factorization,
D, and N, can be decomposed in a higher order coefficient
matrix D, € R™, where det(D,.)# 0, and lower order
coefficient matrices D,, N;. € R™, respectively.
D.(s)=D,®(s)+D ¥(s)
N,(s)=N, ¥ (s} with ®
O(s)= diag(s"‘ ) Yi=l.n

From this the state-space system is obtained by

a By by, ... b,
: i l=-D,,.|: - i|=p, O
g = Gy b, b,
010 0Y) ) 0 0
) 1m by \Be b, (.
A= B= :
0 (0 .. 0 (19
0 0 1 P :
L B By
C=N, D=H(s=wx).

In similar manner A, B, C and D can be derived from
the left coprime factorization. The minimal realization
(10) can be easily linked to standard nonlinear solvers or
any general-purpose circuit simulator. Note that minimal
realization implies minimal computational effort and less
numerical stability problems. For those simulators, such as
SPICE, that do not directly accept the differential
equations as input, the state-space system can be converted
to an equivalent circuit network consisting of passive
elements and controlled voltage and current sources [6].

IV. SYSTEM PROPERTIES

Essential to the usability of the synthesis process is that
the generated model meets the system behavior of the DUT.
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A. Stability

A critical aspect concerns the stability of the fitting
model. It is assured that if all roots p; of the common
denominator polynomial in (4) lie in the left-hand side of
the complex plane, i.e. Re{p;} < 0. In general stability can
be enforced either as a constraint in the calculation of the
rational approximation (4) or applying correction
techniques, such as reflection/contraction of unstable poles
to the left half-plane, in a very simple manner.

B. Passivity

More difficult to handle is to ensure passivity of the
generated TF-representation. Passivity implies that the
systern cannot generate more energy than it absorbs, and
no passive termination of the system will cause the system
to become unstable. A passive system is asymptotically
stable. However, asymptotic stability, ie. Re{p,} <0,
does not imply passivity. The loss of passivity can be a
serious problem because transient simulations of the
generated system model in general circuit environment
may encounter artificial oscillations.

1-MT(jo) H(~jw) 20 (10)

H(—jo)+H(jw) 20 (11)

Assuming the practical case H(s) being symmetric and
its coefficients A;'s and b’s being only real values, the
network is passive if in case of S-matrix representation the
matrix (10) or in case of Y- or Z-matrix representation the
matrix (11) is positive definite for 0 £ @ £ « [7]-{8].
However, ensuring that the condition (10) or (11),
respectively, is not easy analytically for models expressed
in form (4) or (5). On the other hand, transforming the S-
matrix to the corresponding Y- or Z-matrix representation
using (2)-(3) the Kalman-Yakukubovich-Popov criterion
[9] can be applied. Using this criterion the resulting
controllable and observable system representation (6) of
the network is said to be passive, if there exist the matrices
L, W, and P, with P being positive definite, satisfying the
equation system (12).

PA+A'P=-L"L
PB=C" -L'W (12)
WwW=D"+D

P(l+A)+(I+AT)P+...

.{c -pB){p” +D)*{C-B"P)=0 (13)

Ensuring this criterion results in only solving the
Ricatti-Equation (13) and calculating the eigenvalues of
the resulting matrix P, Now non-passive models can be

detected at an early stage of the modeling process and
with reduced computational effort.

V. EXPERIMENTAL RESULTS

In order to demonstrate the usability of this advanced
approach the following two examples are considered.

A. Coupled Flat Cable

First a coupled flat cable characterized by S-parameter
data over the frequency range from 40 kHz to 130 MHz is
considered. The fitting algorithm achieves excellent
agreement between generated rational functions and
dataset used with a TF-matrix of 12"-order as piotted in
Fig. 1. As described above the corresponding state-space
system of McMillan degree 12 is calculated. The extracted
equivalent circuit model for the 4-port is terminated with
50 Ohm at the ports 2, 3, and 4. At port 1 a 50-Ohm
voltage source is exciting the system with a 5-V pulse of
70ns duration. Unified transient simulations obtained
using the calculated SPICE-compatible macromedel are
compared with simulation results acquired with the
original transmission-line model with frequency-
dependent parameters in frequency-domain. As plotted in
Fig. 2, excellent agreement is achieved
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Fig. 1. Simulated S-parameters and calculated model of the

investigated coupled flat cable.

— Transmission line model
- - Proposed method using
- time-domain macromodels

Time (Sec) «10*

Fig. 2. Time-response of coupled flat cable obtained for a
5-V/70-ns pulse with a raise/fall-time of 10 ns.
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B, Cable-Harness Antenna Coupling

As second example the coupling between a cable-
harness and a antenna are investigated. A full-wave field
solver is used to calculate the S-parameters from 150 kHz
to 200 MHz. From this the Y-parameters are calculated
and approximated by 22"-order pole-residue models, The
magnitude responses of the data from simulation and pole-
residue models are given in Fig. 3.
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Fig. 3.  Simulated Y-parameters and calculated model of the

investigated harness antenna coupling application,
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Fig. 4.  Schematics of a harness antenna coupling with switching
driver at the harness and 50-Ohm at the antenna feeding point.
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Fig. 5. Transient response at the hamess (left) and the antenna

feeding point {right) obtained with proposed method and mixed
time/frequency domain simulations.

Fig. 4. illustrates the termination of the synthesized
lumped element network, The transient response at the
harness and antenna feeding point calculated with the
proposed method compared with results obtained from
mixed time- and frequency-domain simulation, shows
excellent agreement, as depicted in Fig. 5.

V1. CONCLUSION

A systematic approach to extract a system model of
minimal order from components characterized by
frequency-dependent data has been described. The
proposed method enables transient simulations in general
circuit environment, consisting of Ilumped/distributed
elements and nonlinear devices, with increased numerical
stability, decreased model complexity and reduced
computation times. This together with the ability to prove
meodel properties in an efficient fashion makes this method
very suitable for system modeling and time-domain
analysis of frequency-dependent data.
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