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Abstracl - The synthesis of lumped-element equivalent 
circuits for time-domain analysis of problems with 
frequency-dependent parameters is of great interest in 
microwave theory. This paper presents P systematic 
approach to generate minimal order realizations for passive 
microwave circuits characterized by either admittance, 
impedance or scattering parameter data Also a very efticient 
method to ensure inherent system properties such as stability 
and passivity is described. Modeling examples for a two- and 
four-port system are given. 

I. INTRODUCTION 

Efficient transient simulations of components 
characterized by &awed or tabulated frequency- 
dependent data have been widely discussed in microwave 
literature. The frequency-dependent nature of the 
investigated problem generally requires: i) the definition 
of the simulation model in frequency-domain, ii) .the 

transformation from the frequency- to the time-domain, 
and iii) the transient analysis and timepomain solution 
[l]. Commonly, the port response ut dwrete frequency 
points is availably in form of Y- (admittance), Z- 
(impedance) or S- (scattering) parameters resulting from 
broadband measurements or rigorous full-wave electro- 
magnetic simulations. For the continuous representation in 
frequency-domain rational fimctions in the complex 
frequency s = jo are used. From the rational functions the 
inverse Fourier transforms for .closed-form representation 
in time-domain are computed analytically. The resulting 
simulation process in time-domain is resolved by using 
recursive convolution schemes. However, the numerical 
evaluation of convolution integrals can require strong 
computational effort and can cause numerical stability 
problems. Alternatively, macromodel synthesis techniques 
are applied to derive the corresponding equivalent circuit 
of the device under test (DUT). In that case the CPU- 
expenses for transient simulations are dependent on the 
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order of the system model and the size of the synthesized 
lumped-element network, respectively. 

This paper discusses different data fitting techniques 
used to generate a rational transfer-function (TF) 
representation for the discrete frequency response of 
multiports. A systematic approach is presented to 
determine the corresponding minimal order realization 
from the calculated TF-matrix and ensure inherent system 
properties such as stability and passivity in a very efficient 
manner. The models provide un accurate description of the 
investigated multiport within the specified frequency 
range and exhibit a considerably reduced complexity, 
which is verified by numerical examples. 

II. DATA FITTMG BY RATIONAL FUNCTIONS 

It is assumed that the frequency responses of the n-port 
to be modeled me .pmvided in terms of Y-, Z- cu S- 
parameters at a discrete set of frequency points w, that 
COWIS the bandwidth of interest, BS e.g. given in (1). 

*q;~: jll YJ (1) 

Y-, Z-, and S-matrices are connected to each other by 
equations (Z)-(3), where Z. is a diagonal matrix containing 
the square mats of all port impedances. 

w”l) = (%I +s(4)-%?)(~- 34.) zo-1) (2) 

z(cy)=(zo-s(w,)-~za)(zo+s(~) zo) (3) 

The rational TF-matrix that approximates the n-port 
frequency parameter data can be written BS 

H(s) = Ao+A,s+A2sZ+...+A,P 

l+b,s+b2s*+...+b,y’I ’ (4) 

where b. is normalized to unity. The A,‘s represent the 
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n x n coeffkknt matrices of the numerator polynomials of 
the order E; and the b,‘s are the coefficients of the common 
denominator polynomial of the order 11. H(s) can also be 
expressed in pole-residue form 

‘) K- 
H(s)=Ko+zA, 

I=, s -pi 

where the pi’s are common poles and K,‘s are residues of 
H(s). The coefficients of the TF-matrix (4) can be calcu- 
lated using different complex curve fitting techniques [2]. 

The Model-Based-Parameter-Estimation method, e.g., 
represents the extension of Prony’s approach to the 
treatment of frequency-domain data [l]. The 
q=‘I+(&+l).~ unknown coefficients in (4) are 
computed by applying a point-matching algorithm, which 
enforces the discrete data to be equal H(w,) at q/2 
frequency points 0,. The resulting linear equation system 
for real and imaginary part of H(w,) are straight forward to 
implement in computer code, however for high order 
approximations over a wide frequency range the system is 
highly ill conditioned. The problem can be overcome by 
using normalized angular frequency values o,‘= w, / 00, 
splitting the frequency range in several sub-domains and/ 
or replacing the ordinary power series (1, w,, o$,. ., wp”] 
in tbe linear equation system by orthogonal polynomials, 
such as Chebyshev polynomials [3]. 

A different method was developed by Gustavsen and 
Semlyen [4]. Their vector fitting procedure determines the 
unknown residue values in (5) in an iterative manner 
starting with an estimated set of real or complex conjugated 
pairs of poles pE. The resulting over-determined equation 
system is solved by applying a least square based 
technique. A critical aspect of the vector fitting method is 
the choice of the appropriate starting poles. 

III. MINIMAL ORDER REALIZATION 

Given a TF-matrix H(s), several forms of time-domain 
realizations can be obtained. The derivation of differential 
equations from a TF-system is referred as macromodel 
synthesis. In general, a set of first-order differential 
equations in state-space domain can be described as 

~x(~)=A~r(r)+B~u(r) , 
(6) 

y(t)=C.r(r)+D.u(t) 

where A E Wm. B E W-, C E R-, D E W” and m 
equals the number of states, i.e. the order of the system. 
Using e.g. tbe Y-matrix (l), the k-th element of the input- 
vector u(r) and the output-vector y(r) equals the voltage 
v&) and the current i&) at port k, respectively. 

A state-space realization (6) is said to be a minimal 
realization of the TF-matrix H(s) if the system matrix A in 
(6) has the smallest possible dimension, i.e. the fewest 
number of states m. The smallest dimension is called the 
~&Won degree of H(s) [5]. To calculate the minimal 
&ization first either the let? OT right coprime 
factorization 

ii(s) = H(s) - H(s = m) 

ii(s) = D,(s)-’ .N,(s) = N,(s)‘D,(s)-’ 
(7) 

is calculated. D,, N,, D,, N, E P(s)” are polynomial 
matrices in s. Considering the right coprime factorization, 
D, and N, can be decomposed in a higher order coeflicient 
matrix Dhc E R”“, where det(Db) # 0, and lower order 
coefticient matrices Dk, Nr E W”‘“, respectively. 

D,(s) = D,‘W + D,<‘W 
N,(s) = N,,‘P(s) with 

@(s)=diag(&) Y i=l...n 

From this the state-space system is obtained by 

(8) 

A= 

C=N, 

f 0 
: ‘. 

4, ..’ 
B= j 

,I 

0 
: ‘. 

4. “. 
D=H(s=m). 

In similar manner A, B, C and D can be derived from 
the I& coprime factorization. The minimal realization 
(10) can be easily linked to standard nonlinear solvers or 
any general-purpose circuit simulator. Note that minimal 
realization implies minimal computational effort and less 
numerical stability problems. For those simulators, such as 
SPICE, that do not directly accept the differential 
equations as input, the state-space system can be converted 
to an equivalent circuit network consisting of passive 
elements and controlled voltage and current sources [6]. 

IV. SYSTEM PROPERTIES 

Essential to the usability of the synthesis process is that 
the generated model meets the system behavior of the DUT. 
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A. Stability 

A critical aspect concerns the stability of the fitting 
model. It is assured that if all roots p, of the common 
denominator polynomial in (4) lie in the left-hand side of 
the complex plane, i.e. Rebr) 5 0. In general stability cm 
be enforced either as a constraint in the calculation of the 
rational approximation (4) or applying correction 
techniques, such as reflection/contraction of unstable poles 
to the 1eA half-plane, in a very simple manner. 

B. Passivity 

More difficult to handle is to ensure passivity of the 
generated TF-representation. Passivity implies that the 
system cannot generate more energy than it absorbs, and 
no passive termination of the system will cause the system 
to become unstable. A passive system is asymptotically 
stable. However, asymptotic stability, i.e. Re(p*} c 0, 
does not imply passivity. The loss of passivity can be a 
serious problem because transient simulations of the 
generated system model in general circuit environment 
may encounter artificial oscillations. 

I-HT(jo).H(-/a) >_O (10) 

HT(-jo)+H(jw) t0 (11) 

Assuming the practical case H(s) being symmetric and 
its coefficients A,% and b,‘s being only real values, the 
network is passive if in case of S-matrix representation the 
matrix (10) or in case of Y- or Z-matrix representaation the 
matrix (11) is positive definite for 0 < o < m [7]-(81. 
However, ensuring that the condition (10) or (11), 
respectively, is not easy analytically for models expressed 
in form (4) or(S). On the other hand, transforming the S- 
matrix to the corresponding Y- or Z-matrix representation 
using (Z)-(3) the Kalman-Yakukubovich-Popov criterion 
[9] can be applied. Using this criterion the resulting 
controllable and observable system representation (6) of 
the network is said to be passive, if there exist the matrices 
L, W, and P, with P being positive defmite. satisfying the 

detected at an early stage of the modeling process and 
with reduced computational effort. 

V. EXPERIMENTAL I&WLTS 

1n order to demonstrate the usability of this advanced 
approach the following two examples are considered. 

A. Coupled Flat Cable 

First a coupled flat cable characterized by S-parameter 
data over the frequency range from 40 kHz to 130 MHz is 
considered. The fitting algorithm achieves excellent 
agreement between generated rational functions and 
dataset used with a TF-matrix of I2’-order as plotted in 
Fig. 1. As described above the comesponding state-space 
system of McMillan degree 12 is calculated. The extracted 
equivalent circuit model for the 4-port is terminated with 
5OOhm at the ports 2, 3, and 4. At port 1 a 50-Ohm 
voltage source is exciting the system with a 5-V pulse of 
70 ns duration. Unified transient simulations obtained 
using the calculated SPICE-compatible macromodel are 
compared with simulation results acquired with the 
original transmission-line model with frequency- 
dependent parameters in frequency-domain. As plotted in 
Fig. 2, excellent agreement is achieved 

2 4 6 8 10 12 
Freq”e”cy,M) Xl0 

Fig. I. Simulated S-parameters and calculated model of the 
investigated coupled flat cable. 

- - 
. _ 

equation system (12). 

PA+A’P=-LrL 

PB=C?-L’W 

WTW=DT+D 

P(I+A)+(l+A’)P+... 

. ..(C -PB)(Dr+D)-‘(C-B’P)=ll 

tinsunng ttus cntenon results m only solving the 
Ricatti-Equation (13) and calculating the eigenvalues of 
the resulting matrix P. Now non-passive models can be 

Fig. 2. Time-response of coupled flat cable obtained for a 
5-V/70-m pulse with a raise/fall-time of 10 ns. 
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B. Cable-Harness Anfenna Coupling 

As second example the coupling between a cable- 
harness and a antenna are investigated. A full-wave field 
solver is used to calculate the S-parameters from 150 kHz 
to 200 MHz. From this the Y-parameters are calculated 
and approximated by 22”d-order pole-residue models. the 
magnitude responses of the data from simulation and pole- 
residue models are given in Fig. 3. 

0, c 

Frequency(ti] x10” 
Fig. 3. Simulated Y-parameters and calculated model of the 
investigated harness antenna coupling application. 

L.-. -.. 
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24d&nu*Hm TrmnrmdMrn 
Fig. 4. Schematicsofahamessantennacouplingwithswitching 
driverat the harness andJO-Ohmat theantenna feedingpoint. 

rime (SBC) , ,6’ , ,# 

Fig. 5. Transient response at the harness (I&) and the antenna 
feeding point (right) obtained with proposed method and mixed 
time/frequency domain simulations. 

Fig.4. illustrates the termination of the synthesized 
lumped element network. The transient response at the 
harness and antenna feeding point calculated with the 
proposed method compared with results obtained from 
mixed time- and frequency-domain simulation, shows 
excellent agreement, as depicted in Fig. 5. 

VI. CONCLUSION 

A systematic approach to extract a system model of 
minimal order from components characterized by 
frequency-dependent data has been described. The 
proposed method enables transient simulations in general 
circuit environment, consisting of lumped/distributed 
elements and nonlinear devices, with increased numerical 
stability, decreased model complexity and reduced 
computation times. This together with the ability to prove 
model properties in an efficient fashion makes this method 
very suitable for system modeling and time-domain 
analysis of frequency-dependent data. 
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